A Novel “Four-component” Two-component Signal Transduction Mechanism Regulates Developmental Progression in Myxococcus xanthus*
نویسندگان
چکیده
Histidine-aspartate phosphorelays are employed by two-component signal transduction family proteins to mediate responses to specific signals or stimuli in microorganisms and plants. The RedCDEF proteins constitute a novel signaling system in which four two-component proteins comprising a histidine kinase, a histidine-kinase like protein, and two response regulators function together to regulate progression through the elaborate developmental program of Myxococcus xanthus. A combination of in vivo phenotypic analyses of in-frame deletions and non-functional point mutations in each gene as well as in vitro autophosphorylation and phosphotransfer analyses of recombinant proteins indicate that the RedC histidine kinase protein autophosphorylates and donates a phosphoryl group to the single domain response regulator, RedF, to repress progression through the developmental program. To relieve this developmental repression, RedC instead phosphorylates RedD, a dual receiver response regulator protein. Surprisingly, RedD transfers the phosphoryl group to the histidine kinase-like protein RedE, which itself appears to be incapable of autophosphorylation. Phosphorylation of RedE may render RedE accessible to RedF, where it removes the phosphoryl group from RedF-P, which is otherwise an unusually stable phosphoprotein. These analyses reveal a novel "four-component" signaling mechanism that has probably arisen to temporally coordinate signals controlling the developmental program in M. xanthus. The RedCDEF signaling system provides an important example of how the inherent plasticity and modularity of the basic two-component signaling domains comprise a highly adaptable framework well suited to expansion into complex signaling mechanisms.
منابع مشابه
Four unusual two-component signal transduction homologs, RedC to RedF, are necessary for timely development in Myxococcus xanthus.
We identified a cluster of four two-component signal transduction genes that are necessary for proper progression of Myxococcus xanthus through development. redC to redF mutants developed and sporulated early, resulting in small, numerous, and disorganized fruiting bodies. Yeast two-hybrid analyses suggest that RedCDEF act in a single signaling pathway. The previously identified espA gene displ...
متن کاملCrdS and CrdA Comprise a Two-Component System That Is Cooperatively Regulated by the Che3 Chemosensory System in Myxococcus xanthus
Myxococcus xanthus serves as a model organism for development and complex signal transduction. Regulation of developmental aggregation and sporulation is controlled, in part, by the Che3 chemosensory system. The Che3 pathway consists of homologs to two methyl-accepting chemotaxis proteins (MCPs), CheA, CheW, CheB, and CheR but not CheY. Instead, the output for Che3 is the NtrC homolog CrdA, whi...
متن کاملThe Nla28S/Nla28 two-component signal transduction system regulates sporulation in Myxococcus xanthus.
The response regulator Nla28 is a key component in a cascade of transcriptional activators that modulates expression of many important developmental genes in Myxococcus xanthus. In this study, we identified and characterized Nla28S, a histidine kinase that modulates the activity of this important regulator of M. xanthus developmental genes. We show that the putative cytoplasmic domain of Nla28S...
متن کاملHonors Thesis: Characterization of the Che7 System of Myxococcus xanthus through a Yeast Two-Hybrid Assay
Myxococcus xanthus is a Gram negative soil bacterium that utilizes eight chemosensory systems of interacting proteins, most of which are homologous to the E.coli chemotaxis proteins, in order to regulate its two types of gliding motility (A and S), predation of other organisms, and multicellular fruiting body formation. The M. xanthus Che7 system, which has not been thoroughly characterized to ...
متن کاملThe Myxococcus xanthus developmentally expressed asgB-dependent genes can be targets of the A signal-generating or A signal-responding pathway.
Functional Myxococcus xanthus A signal-generating and A signal-responding pathways are required for the progression through early multicellular development. To identify genes responsive to these pathways, the expression of eight early developmental genes was analyzed. This examination identified one gene as a target of the A signal-generating pathway and four genes as targets of the A signal-re...
متن کامل